Алгоритм декодирования сообщения с кодом Хэмминга

ПРИМЕР СООБЩЕНИЯ: 1001010

1. НАХОДИМ КОНТРОЛЬНЫЕ БИТЫ

Каждый бит, подходящий по номеру (позиции) степени двойки (2^0 =1, 2^1 =2, 2^2 =4, 2^3 =8, 2^4 =16, ...), является контрольным — по таким битам будем определять, верно ли сообщение.

Читаем сообщение **слева направо** и выделяем соответствующие биты:

Номер бита	1	2	3	4	5	6	7
Сообщение	1	0	0	1	0	1	0

2. ПРОВЕРКА ЧЁТНОСТИ

Простой метод для обнаружения ошибок в передаваемом пакете данных заключается в сложении бит по модулю 2, т.е. мы делим их сумму на 2 и записываем остаток от деления:

Для каждого контрольного бита считается сумма, начиная с этого (N) бита по N бит подряд через каждые N бит.

Так, для второго бита суммируются 2 и 3, 6 и 7, 10 и 11, ... Для четвёртого бита суммируются с 4 по 7, с 12 по 15, ...

Например, для второго бита сумма будет считаться так:

Номер бита	1	2	3	4	5	6	7
Сообщение	1	0	0	1	0	1	0

Берём выделенные биты, суммируем и считаем остаток: 0+0+1+0=1. **остаток** = 1

— Считаем таким образом суммы по модулю 2 для всех контрольных бит

Пример для нашей последовательности:

Номер бита	1	2	3	4	5	6	7	0.4442	Остаток	
Сообщение	1	0	0	1	0	1	0	Сумма	Остаток	
1	1		0		0		0	1	1	
2		0	0			1	0	1	1	
4				1	0	1	0	0	0	

3. РЕЗУЛЬТАТЫ ПРОВЕРКИ

- Выписываем получившиеся остатки **справа налево**, полученное число называется **синдром** (у нас это **011**)
- Если синдром **равен нулю** (все биты нулевые), значит **ошибки нет**, достаточно выписать сообщение <u>без контрольных</u> битов.
- Если синдром **не равен нулю**, нужно перевести его из двоичной в десятичную систему счисления и получить номер бита с ошибкой. Для исправления его надо инвертировать (поменять ноль на единицу или наоборот), а после также выписать сообщение **без контрольных битов**.
- Если полученный из синдрома номер бита **больше длины сообщения**, то считается, что сообщение исправить нельзя, так как произошла неодиночная ошибка. Исправляем бит под номером **011**₂ = **3**₁₀:

Номер бита	1	2	3	4	5	6	7
Сообщение	1	0	1	1	0	1	0

Выписываем без контрольных битов: 1010