
КАК РАБОТАТЬ С ДИСКАМИ Стенд «Каналы связи и кодирование» (О-БТС)

Бод — это фрагмент сигнала, несущий одну единицу информации. На диске один сегмент соответствует одному боду, который задаёт символ.

Задача — декодировать диск, узнать последовательность символов, закодированных на диске.

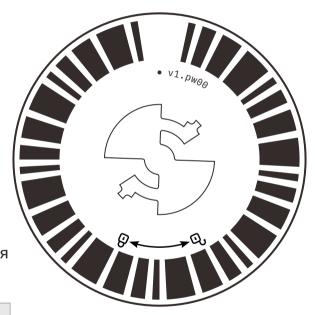
Перед тем, как декодировать любой код, нужно определить границы одного оборота диска — повторяющегося элемента на графике — и работать только с этой последовательностью. За время сеанса измерения на стенде диск может сделать полный оборот несколько раз.

ПАМЯТКА ДИСКА: код pw Стенд «Каналы связи и кодирование» (О-БТС)

Описание

В коде два уровня сигнала: высокий (прозрачные сегменты диска, боды) и низкий (чёрные боды).

Данные кодируются шириной **чёрного**. Между бодами чёрного цвета расположены прозрачные фиксированной ширины по 3°. В начале сообщения передается 12° высокого уровня.


Тип закодированного сообщения:

нуклеотидная последовательность

Способ кодирования: широтно-импульсная модуляция

Алфавит: ATGC

Символ	Α	Т	G	С
Ширина черного сегмента	3°	6°	9°	12°

ПАМЯТКА ДИСКА: код aw Стенд «Каналы связи и кодирование» (О-БТС)

Описание


В этом коде данные кодируются уровнем сигнала и его шириной. Два подряд идущих сектора одинаковой плотности краски разделить нельзя, поэтому в этом коде отсутствует повторение двух уровней подряд. Логическое значение уровня зависит от того, какой уровень был предыдущим.

Тип закодированного сообщения: аминокислотная последовательность.

Способ кодирования: амплитудно-широтная модуляция.

Алфавит: GAVILPSTCMDNEQKRHFYW **Стартовое условие:** 12° плотности 0%.

Коды подобраны так, что они никогда не начинаются и не оканчиваются на плотности стартового условия.

Таблица логических уровней по плотности краски на боде для кода aw

Текущая плотность	Предыдущая плотность краски									
краски	100%	80%	60%	40%	20%	0%				
100%	_	1	1	1	1	1				
80%	1	_	2	2	2	2				
60%	2	2	_	3	3	3				
40%	3	3	3	_	4	4				
20%	4	4	4	4	_	5				
0%	5	5	5	5	5	_				

Таблица значений от ширины бода и логического уровня для кода аw

Символ: Аминокислота	G Глицин	Р Пролин	D Аспарагиновая кислота	R Аргинин	А Аланин	S Серин	N Аспарагин	Н Гистидин	V Валин	Т Треонин
Логический уровень	1	1	1	1	2	2	2	2	3	3
Ширина бода	3	6	9	12	3	6	9	12	3	6

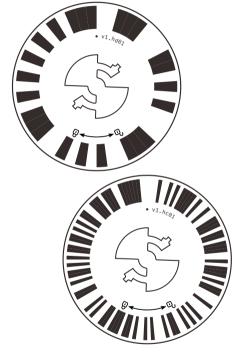
Символ: Аминокислота	Е Глутаминовая кислота	F Фенилаланин	 Изолейцин	С Цистеин	Q Глутамин	Ү Тирозин	L Лейцин	М Метионин	К Лизин	W Триптофан
Логический уровень	3	3	4	4	4	4	5	5	5	5
Ширина бода	9	12	3	6	9	12	3	6	9	12

ПАМЯТКА ДИСКА: код hd и hc Стенд «Каналы связи и кодирование» (О-БТС)

Описание

Диск представляет собой последовательность прозрачных и чёрных сегментов, кодирующих соответственно единицу и нуль двоичного кода. Ширина сегмента одинакова для всех бодов и зависит от длины сообщения таким образом, что они равномерно расположены на обороте диска.

Коды отличаются количеством символов:


hd - 46 символов, hc - 132 символа.

Тип закодированного сообщения:

двоичная последовательность (биты), закодированные кодом Хэмминга

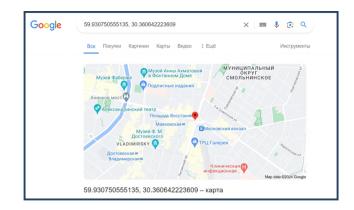
Способ кодирования: амплитудная модуляция

Алфавит: 0 или 1

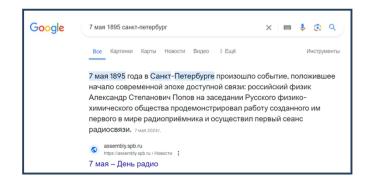
Символ	0	1	2	3	4	5	6	7	8	9		,	_
Биты	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1101	1110

Как работать с сообщением кодов hd и hc

На дисках этих кодов закодированы **даты** (hd) и координаты места (hc) известных событий из истории беспроводных технологий связи.


Кодируются они попарно, по номеру диска:

hd01 — дата первого события,


hc01 — координаты места первого события.

Само произошедшее событие является ответом.

- Декодируем пару дисков: снимите двоичную последовательность и декодируйте с помощью метода кода Хэмминга
- 2 Восстанавливаем закодированные сообщения:
 Каждые 4 бита сравниваем по таблице значений
- 3 Вводим координаты в поиск: Координаты могут как указывать на конкретное место (офис предприятия), так и в целом на город

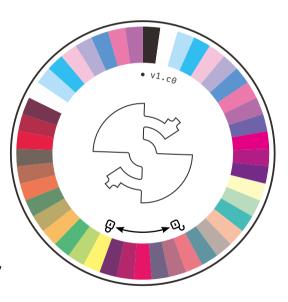
4 Вводим в поиск дату и найденный город в формате по типу «7 мая 1895 Санкт-Петербург» и смотрим результаты, связанные с беспроводной связью.

ПАМЯТКА ДИСКА: код с Стенд «Каналы связи и кодирование» (О-БТС)

Описание

Ширина бодов на одном диске одинакова и зависит от числа символов в сообщении. Ширина стартового условия совпадает с шириной бода. Данные кодируются плотностью голубого, мадженты и жёлтого цветов: по 0% (прозрачный), 33%, 66% и 100%.

Тип закодированного сообщения:


последовательность букв русского алфавита с пунктуационными знаками: точка, запятая, тире

Способ кодирования: кодирование плотностью цвета,

хроматический код

Алфавит: АБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ.-,

Стартовое условие: бод чёрного цвета (100% плотности)

Таблица значений для сообщений кода с

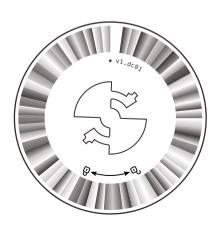
Символ	Α	Б	В	Г	Д	E	ж	3	И	Й	К	Л
Плотность голубого (Cyan), в %	0	33	66	0	33	66	0	33	66	0	33	66
Плотность мадженты (Magenta), в %	0	0	0	33	33	33	66	66	66	100	100	100
Плотность жёлтого (Yellow), в %	0	0	0	0	0	0	0	0	0	0	0	0

Символ	М	Н	0	п	Р	С	Т	У	Ф	X	ц	Ч
Плотность голубого (Cyan), в %	0	33	66	0	33	66	0	33	66	0	33	66
Плотность мадженты (Magenta), в %	0	0	0	33	33	33	66	66	66	100	100	100
Плотность жёлтого (Yellow), в %	33	33	33	33	33	33	33	33	33	33	33	33

Символ	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я		-	,	
Плотность голубого (Cyan), в %	0	33	66	0	33	66	0	33	66	0	33	66
Плотность мадженты (Magenta), в %	0	0	0	33	33	33	66	66	66	100	100	100
Плотность жёлтого (Yellow), в %	66	66	66	66	66	66	66	66	66	66	66	66

ПАМЯТКА ДИСКА: код dc Стенд «Каналы связи и кодирование» (О-БТС)

Описание


Данные закодированы двумя параметрами: логическим уровнем сигнала в начале бода и логическим уровнем сигнала в конце бода. Логический уровень сигнала зависит от плотности краски. У бодов фиксированная ширина — 8°.

Тип закодированного сообщения: аминокислотная последовательность

Способ кодирования: дифференциальный код

Алфавит: GAVILPSTCMDNEQKRHFYW

Стартовое условие: прозрачный бод шириной 8°

Уровень в		Урс	вень в конце б	ода	
начале бода	0 0%	1 25%	2 50%	3 75%	4 100%
100%	_	G	Α	V	I
80%	L	_	Р	S	Т
60%	С	М	_	D	N
40%	E	Q	К	_	R
20%	Н	F	Υ	W	_
0%	_	G	Α	V	I

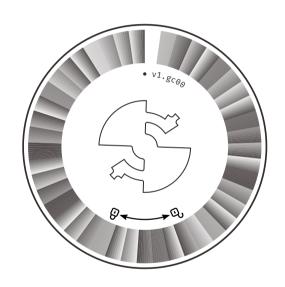
ПАМЯТКА ДИСКА: код gc Стенд «Каналы связи и кодирование» (О-БТС)

Описание

В этом коде боды, формирующие данные, представлены градиентными переходами плотности фиксированной ширины — 8°.

Величина градиентного перехода между произвольными уровнями определяет закодированный символ.

Тип закодированного сообщения:


нуклеотидная последовательность

Способ кодирования: градиентный код

Алфавит: ATGC

Стартовое условие: прозрачный бод шириной 8°

Символ	A	Т	G	С
Плотность закраски	5%	30%	50%	70%

ПАМЯТКА ДИСКА: код am Стенд «Каналы связи и кодирование» (О-БТС)

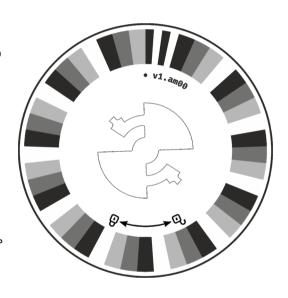
Описание

Длительности бодов фиксированы, по 8°. Данные кодируются плотностью закраски сегмента, всего их четыре: 0% (прозрачный), 33%, 66%, 100% (чёрный). Чем плотнее закраска, тем слабее прошедший сигнал.

Тип закодированного сообщения:

нуклеотидная последовательность

Способ кодирования: амплитудная модуляция


Алфавит: ATGC

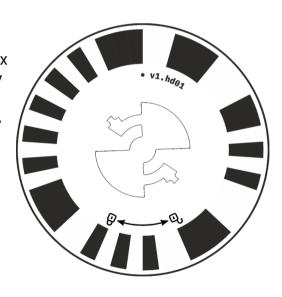
Стартовое условие: чередование сегментов шириной по 4°

черный - прозрачный - черный - прозрачный

(100%, 0%, 100%, 0%)

Символ	A	Т	G	С
Плотность закраски	100%	66%	33%	0%

ПАМЯТКА ДИСКА: код hd Стенд «Каналы связи и кодирование» (О-БТС)

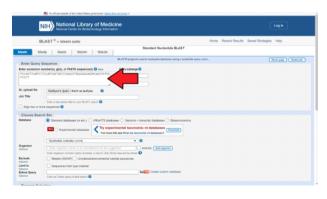

Описание

Диск представляет собой последовательность прозрачных и чёрных сегментов, кодирующих соответственно единицу и нуль двоичного кода. Ширина сегмента одинакова для всех бодов и зависит от длины сообщения таким образом, что они равномерно расположены на обороте диска. Диск с кодом hd передаёт 46 символов.

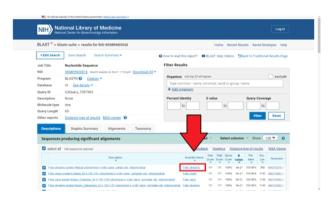
Тип закодированного сообщения: двоичная последовательность (биты)

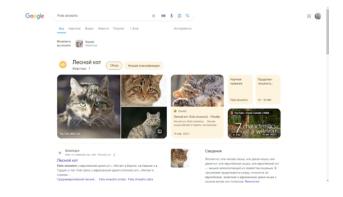
Способ кодирования: амплитудная модуляция

Алфавит: 0 или 1



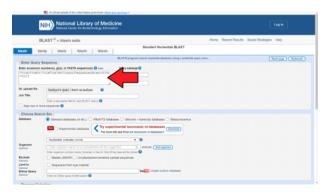
КАК РАБОТАТЬ С НУКЛЕОТИДНОЙ ПОСЛЕДОВАТЕЛЬНОСТЬЮ


Зайдите на сайт BLAST и нажмите кнопку «Nucleotide BLAST»

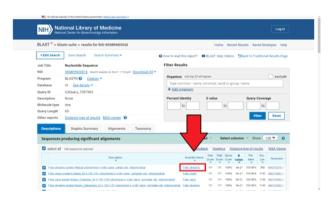

2 Введите сообщение с диска и нажмите копку «BLAST» внизу страницы

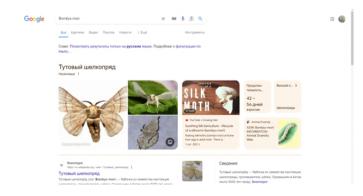
Pesyльтат отобразится в окне
«Sequences producing significant alignments»
в столбце «Scientific Name»

Введите научное название в поисковый сервис. Название на русском языке будет ответом



КАК РАБОТАТЬ С АМИНОКИСЛОТНОЙ ПОСЛЕДОВАТЕЛЬНОСТЬЮ


Зайдите на сайт BLAST и нажмите кнопку «Protein BLAST»


Введите сообщение с диска и нажмите копку «BLAST» внизу страницы

Pesyльтат отобразится в окне
«Sequences producing significant alignments»
в столбце «Scientific Name»

4 Введите научное название в поисковый сервис. Название на русском языке будет ответом

АЛГОРИТМ ДЕКОДИРОВАНИЯ СООБЩЕНИЯ С КОДОМ ХЭММИНГА

Пример сообщения: 1001010

1 Найдите контрольные биты.

Каждый бит, подходящий по номеру (позиции) степени двойки (20=1, 21=2, 22=4, 23=8, 24=16, ...), является контрольным — по таким битам определяется, верно ли сообщение. Прочтите сообщение слева направо и выделите соответствующие биты:

Номер бита	1	2	3	4	5	6	7
Сообщение	1	0	0	1	0	1	0

Проверка чётности.

Простой метод для обнаружения ошибок в передаваемом пакете данных заключается в сложении бит по модулю 2, т.е. разделите их сумму на 2 и запишите остаток от деления.

Для каждого контрольного бита считается сумма, начиная с этого (N) бита по N бит подряд через каждые N бит.

Так, для второго бита суммируются 2 и 3, 6 и 7, 10 и 11, ... Для четвёртого бита суммируются с 4 по 7, с 12 по 15, ...

Например, для второго бита сумма будет считаться так:

Номер бита	1	2	3	4	5	6	7
Сообщение	1	0	0	1	0	1	0

Возьмите выделенные биты, суммируйте и считайте остаток: 0+0+1+0=1, остаток = 1

Считайте таким образом суммы по модулю 2 для всех контрольных бит.

Пример для данной последовательности:

Номер бита	1	2	3	4	5	6	7	Comme	Остаток	
Сообщение	1	0	0	1	0	1	0	Сумма		
1	1		0		0		0	1	1	
2		0	0			1	0	1	1	
4				1	0	1	0	0	0	

3

Результаты проверки

Выпишите получившиеся остатки справа налево, полученное число называется синдром (здесь это 011)

- Если синдром равен нулю (все биты нулевые), значит ошибки нет, достаточно выписать сообщение **без контрольных битов**.
- Если синдром не равен нулю, нужно перевести его из двоичной в десятичную систему счисления и
 получить номер бита с ошибкой. Для исправления его надо инвертировать (поменять ноль на единицу
 или наоборот), а после также выписать сообщение без контрольных битов.
- Если полученный из синдрома номер бита больше длины сообщения, то считается, что сообщение исправить нельзя, так как произошла неодиночная ошибка.

Исправляем бит под номером 011, = 310:

Номер бита	1	2	3	4	5	6	7
Сообщение	1	0	1	1	0	1	0

Выпишите без контрольных битов: 1010